

Welcome to jumpssh’s documentation!

	Introduction

	Api reference

	Changes

	License

Indices and tables

	Index

	Module Index

	Search Page

Introduction

JumpSSH

[image: _images/JumpSSH.svg]
 [http://travis-ci.org/AmadeusITGroup/JumpSSH][image: _images/badge.svg]
 [https://coveralls.io/r/AmadeusITGroup/JumpSSH?branch=master][image: _images/jumpssh.svg]
 [https://badge.fury.io/py/jumpssh][image: _images/badge1.svg]
 [https://jumpssh.readthedocs.io?badge=latest][image: _images/measure.svg]
 [https://sonarcloud.io/dashboard?id=amadeusitgroup_jumpssh][image: _images/measure1.svg]
 [https://sonarcloud.io/dashboard?id=amadeusitgroup_jumpssh]
	JumpSSH

	Python module to run commands on remote servers

	Copyright

	Copyright (c) 2017 Amadeus sas

	License

	MIT [https://github.com/AmadeusITGroup/JumpSSH/blob/master/LICENSE]

	Documentation

	https://jumpssh.readthedocs.io

	Development

	https://github.com/AmadeusITGroup/JumpSSH

What

JumpSSH is a module for Python 2.7+/3.5+ that can be used to run commands on remote servers through a gateway.

It is based on paramiko library [http://www.paramiko.org].
It provides the ability to execute commands on hosts that are not directly accessible but only through one or
more servers.
Script does not need to be uploaded on a remote server and can be run locally.

Several authentication methods are supported (password, ssh key).

Commands can be run through several jump servers before reaching the remote server.
No need to establish a session for each command, a single ssh session can run as many command as you want,
including parallel queries, and you will get result for each command independently.

	So, why another python library to setup remote server through ssh ? Here is a quick comparison with the most known existing python libraries
	
	Paramiko: provide very good implementation of SSHv2 protocol in python but with a low level api a bit complex

	Ansible: require more configuration and understanding to start.
Moreover, support of bastion host is done with modification of local ssh config to use ProxyCommand, and this is
needed for each bastion host.

	Fabric: use of jump server is much easier than Ansible thanks to ‘env.gateway’ parameter, but does not allow jump through several servers.

Installation

To install JumpSSH, simply:

$ pip install jumpssh

Examples

establish ssh session with a remote host through a gateway:

>>> from jumpssh import SSHSession

establish ssh connection between your local machine and the jump server
>>> gateway_session = SSHSession('gateway.example.com',
... 'my_user', password='my_password').open()

from jump server, establish connection with a remote server
>>> remote_session = gateway_session.get_remote_session('remote.example.com',
... password='my_password2')

run commands on remote host:

command will be executed remotely and output will be returned locally and printed
>>> print(remote_session.get_cmd_output('ls -lta'))
total 28
drwxr-xr-x. 412 root root 12288 Mar 21 14:25 ..
drwx------. 2 my_user my_user 28 Mar 6 19:25 .ssh
drwx------. 3 my_user my_user 70 Mar 6 19:25 .
-rw-r--r--. 1 my_user my_user 18 Jul 12 2016 .bash_logout
-rw-r--r--. 1 my_user my_user 193 Jul 12 2016 .bash_profile
-rw-r--r--. 1 my_user my_user 231 Jul 12 2016 .bashrc

get exit code of the remotely executed command (here to check if a package is installed)
>>> remote_session.get_exit_code('yum list installed package_name')
0

remote rest api usage:

calling rest api on remote host that is only accessible from the gateway
>>> from jumpssh import RestSshClient
>>> rest_client = RestSshClient(gateway_session)

syntax is similar to requests library (http://docs.python-requests.org)
>>> http_response = rest_client.get('http://remote.example.com/helloworld')
>>> http_response.status_code
200
>>> http_response.text
u'Hello, World!'

remote files operations:

check if remote path exists
>>> remote_session.exists('/path/to/a/file')
True

copy file from local machine to remote host through gateway
>>> remote_session.put('/local/path/to/a/file', '/remote/path/to/the/file')

create file on remote host from local content
>>> remote_session.file('/remote/path/to/the/file',
... content='remote file content', permissions='600')

download remote file on local machine from remote host through gateway
>>> remote_session.get('/remote/path/to/the/file', '/local/path/')

Tests

jumpssh tests require docker, check docker documentation [https://docs.docker.com] for how to install it
depending on your OS.
it also requires few python packages. To install them, run:

$ pip install -r requirements_dev.txt

To run the test suite, clone the repository and run:

$ pytest -sv tests/

or simply:

$ tox

Contributing

Bug Reports

Bug reports are hugely important! Before you raise one, though,
please check through the GitHub issues [https://github.com/AmadeusITGroup/JumpSSH/issues],
both open and closed, to confirm that the bug hasn’t been reported before.

Feature Requests

If you think a feature is missing and could be useful in this module, feel free to raise a feature request through the
GitHub issues [https://github.com/AmadeusITGroup/JumpSSH/issues]

Code Contributions

When contributing code, please follow this project-agnostic contribution guide [http://contribution-guide.org/].

Api reference

jumpssh.exception

	
exception jumpssh.exception.ConnectionError(msg, original_exception=None)

	Bases: jumpssh.exception.SSHException

Exception raised when unable to establish SSHSession with remote host

	
exception jumpssh.exception.RestClientError(msg, original_exception=None)

	Bases: jumpssh.exception.SSHException

Exception raised when error occurs during rest ssh calls

	
exception jumpssh.exception.RunCmdError(exit_code, success_exit_code, command, error, runs_nb=1)

	Bases: jumpssh.exception.SSHException

Exception raised when remote command return a non success exit code

	Variables

	
	exit_code (int [https://docs.python.org/3/library/functions.html#int]) – The exit code from the run command.

	list [https://docs.python.org/3/library/stdtypes.html#list](int [https://docs.python.org/3/library/functions.html#int]) – List of expected success exit codes for run command.

	command (str [https://docs.python.org/3/library/stdtypes.html#str]) – The command that is generating this exception.

	error (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error captured from the command output.

	
exception jumpssh.exception.SSHException(msg, original_exception=None)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Generic exception for jumpssh

Allow to chain exceptions keeping track of origin exception

	
exception jumpssh.exception.TimeoutError(msg, original_exception=None)

	Bases: jumpssh.exception.SSHException

Exception raised when remote command execution reached specified timeout

jumpssh.restclient

	
class jumpssh.restclient.HTTPResponse(http_response_str)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
check_for_success()

	

	
is_valid_json_body()

	

	
json(**kwargs)

	

	
class jumpssh.restclient.RestSshClient(ssh_session=None, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
delete(uri, **kwargs)

	Sends a DELETE request.

	Parameters

	
	uri – URL of the http request.

	**kwargs – Optional arguments that request() takes.

	Returns

	HTTPResponse object

	Return type

	restclient.HTTPResponse

	
get(uri, **kwargs)

	Sends a GET request.

	Parameters

	
	uri – URL of the http request.

	**kwargs – Optional arguments that request() takes.

	Returns

	HTTPResponse object

	Return type

	restclient.HTTPResponse

	
head(uri, **kwargs)

	Sends a HEAD request.

	Parameters

	
	uri – URL of the http request.

	**kwargs – Optional arguments that request() takes.

	Returns

	HTTPResponse object

	Return type

	restclient.HTTPResponse

	
options(uri, **kwargs)

	Sends a OPTIONS request.

	Parameters

	
	uri – URL of the http request.

	**kwargs – Optional arguments that request() takes.

	Returns

	HTTPResponse object

	Return type

	restclient.HTTPResponse

	
patch(uri, **kwargs)

	Sends a PATCH request.

	Parameters

	
	uri – URL of the http request.

	**kwargs – Optional arguments that request() takes.

	Returns

	HTTPResponse object

	Return type

	restclient.HTTPResponse

	
post(uri, **kwargs)

	Sends a POST request.

	Parameters

	
	uri – URL of the http request.

	**kwargs – Optional arguments that request() takes.

	Returns

	HTTPResponse object

	Return type

	restclient.HTTPResponse

	
put(uri, **kwargs)

	Sends a PUT request.

	Parameters

	
	uri – URL of the http request.

	**kwargs – Optional arguments that request() takes.

	Returns

	HTTPResponse object

	Return type

	restclient.HTTPResponse

	
request(method, uri, **kwargs)

	Perform http request and send back http response.

	Parameters

	
	method – http method.

	uri – remote URL to target.

	params – (optional) Dictionary to be sent in the query string.

	data – (optional) Content to send in the body of the http request.

	headers – (optional) Dictionary of HTTP Headers to send with the http request.

	remote_file – (optional) File on the remote host with content to send in the body of the http request.

	local_file – (optional) Local file with content to send in the body of the http request.

	document_info_only – (optional) if True, only HTTP Headers are returned in http response (default=False).

	auth – (optional) Auth tuple to enable Basic/Digest/Custom HTTP Auth.

	verify – (optional) whether the SSL cert will be verified.

	silent – if True, does not log the command run (useful if sensitive information are used in command)

	Returns

	HTTPResponse object

	Return type

	restclient.HTTPResponse

Usage:

>>> from jumpssh import RestSshClient
>>> with RestSshClient(host='gateway.example.com', username='my_user') as rest_client:
>>> ... http_response = rest_client.request('GET', 'http://remote.example.com')
>>> ... http_response.status_code
200

jumpssh.session

	
class jumpssh.session.RunCmdResult(exit_code, output, result_list, command, success_exit_code, runs_nb)

	Bases: jumpssh.session.RunSSHCmdResult

Result of a command run with SSHSession

	Parameters

	
	exit_code – exit code of the run command (last run exit_code in case of retries)

	output – output of the command run (last run output only in case of retries)

	command – the command run

	result_list – list of RunSSHCmdResult, 1 item for each retry

	success_exit_code – list of integer considered as a success exit code for command run

	runs_nb – number of times the command has been run

Usage:

>>> result = ssh_session.run_cmd('hostname')

access to both exit_code and command output using tuple
>>> (exit_code, output) = result

access directly to single attributes
>>> result.exit_code
0

>>> result.output
u'gateway.example.com'

>>> result.command
'hostname'

	
class jumpssh.session.RunSSHCmdResult(exit_code, output)

	Bases: tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
property exit_code

	Alias for field number 0

	
property output

	Alias for field number 1

	
class jumpssh.session.SSHSession(host, username, proxy_transport=None, private_key_file=None, port=22, password=None, missing_host_key_policy=None, compress=False, timeout=None, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Establish SSH session with a remote host

	Parameters

	
	host – name or ip of the remote host

	username – user to be used for remote ssh session

	proxy_transport – paramiko.transport.Transport [http://docs.paramiko.org/en/stable/api/transport.html#paramiko.transport.Transport] object for an SSH connection
used to establish ssh session between 2 remotes hosts

	private_key_file – local path to a private key file to use if key needed for authentication
and not present in standard path (~/.ssh/)

	port – port to connect to the remote host (default 22)

	password – password to be used for authentication with remote host

	missing_host_key_policy – set policy to use when connecting to servers without a known host key.
This parameter is a class instance of type
paramiko.client.MissingHostKeyPolicy [http://docs.paramiko.org/en/stable/api/client.html#paramiko.client.MissingHostKeyPolicy], not a class itself

	compress – set to True to turn on compression for this session

	timeout – optional timeout opening SSH session, default 3600s (1h)

	**kwargs – any parameter taken by
paramiko.client.SSHClient.connect [http://docs.paramiko.org/en/stable/api/client.html#paramiko.client.SSHClient.connect]
and not already explicitly covered by SSHSession

Usage:

>>> from jumpssh import SSHSession
>>> gateway_session = SSHSession('gateway.example.com', 'my_user', password='my_password')

	
close()

	Close connection with remote host

	Usage::
	>>> from jumpssh import SSHSession
>>> ssh_session = SSHSession('gateway.example.com', 'my_user', password='my_password').open()
>>> ssh_session.is_active()
True
>>> ssh_session.close()
>>> ssh_session.is_active()
False

	
exists(path, use_sudo=False)

	Check if path exists on the remote host

	Parameters

	
	path – remote path to check for existence

	use_sudo – if True, allow to check path current user doesn’t have access by default

	Returns

	True, if specified path exists on the remote host else False

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Usage::
	>>> with SSHSession('gateway.example.com', 'my_user', password='my_password') as ssh_session:
>>> ... ssh_session.exists('/path/to/remote/file')
False
>>> ... ssh_session.exists('/home/other_user/.ssh', use_sudo=True)
True

	
file(remote_path, content, use_sudo=False, owner=None, permissions=None, username=None, silent=False)

	Method to create a remote file with the specified content

	Parameters

	
	remote_path – destination folder in which to copy the local file

	content – content of the file

	use_sudo – allow to copy file in location with restricted permissions

	owner – user that will own the file on the remote host

	permissions – permissions to apply on the remote file (chmod format)

	username – sudo user

	silent – disable logging

Usage:

create file on remote host and with specified content at the specified path
>>> ssh_session.file(remote_path='/path/to/remote/file', content='file content')

create file on remote host and with specified content at the specified path needing sudo permissions
>>> ssh_session.file(remote_path='/path/to/remote/file', content='file content', use_sudo=True)

create file on remote host and with specified content at the specified path
with specified owner and permissions
>>> ssh_session.file(remote_path='/path/to/remote/file', content='file content',
... owner='other_user', permissions='700')

	
get(remote_path, local_path, use_sudo=False, username=None)

	Download a file from the remote host

	Parameters

	
	remote_path – remote path of the file to download

	local_path – local path where to download the file

	use_sudo – allow to download a file from a location current user does not have access

	username – sudo user

Usage:

download remote file in local directory
>>> ssh_session.get(remote_path='/path/to/remote/file', local_path='/local/folder')

donload remote file from a path not accessible by current user
>>> ssh_session.get(local_path='/path/to/local/file', remote_path='/path/to/remote/file', use_sudo=True)

	
get_cmd_output(cmd, **kwargs)

	Return output of remotely executed command

Support same parameters than run_cmd method

	Parameters

	cmd – remote command to execute

	Returns

	output of remotely executed command

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Usage::
	>>> from jumpssh import SSHSession
>>> with SSHSession('gateway.example.com', 'my_user', password='my_password') as ssh_session:
>>> ... ssh_session.get_cmd_output('hostname'))
u'gateway.example.com'

	
get_exit_code(cmd, **kwargs)

	Return exit code of remotely executed command

Support same parameters than run_cmd method

	Parameters

	cmd – remote command to execute

	Returns

	exit code of remotely executed command

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Usage::
	>>> from jumpssh import SSHSession
>>> with SSHSession('gateway.example.com', 'my_user', password='my_password') as ssh_session:
>>> ... ssh_session.get_exit_code('ls')
0
>>> ... ssh_session.get_exit_code('dummy_command')
127

	
get_remote_session(host, username=None, retry=0, private_key_file=None, port=22, password=None, retry_interval=10, compress=False, timeout=None, **kwargs)

	Establish connection with a remote host from current session

	Parameters

	
	host – name or ip of the remote host

	username – user to be used for remote ssh session

	retry – retry number to establish connection with remote host (-1 for infinite retry)

	private_key_file – local path to a private key file to use if key needed for authentication

	port – port to connect to the remote host (default 22)

	password – password to be used for authentication with remote host

	retry_interval – number of seconds between each retry

	compress – set to True to turn on compression for this session

	timeout – optional timeout opening remote session, default 3600s (1h)

	**kwargs – any parameter taken by
paramiko.client.SSHClient.connect [http://docs.paramiko.org/en/stable/api/client.html#paramiko.client.SSHClient.connect]
and not already explicitly covered by SSHSession

	Returns

	session object of the remote host

	Return type

	SSHSession

Usage:

open session with remote host
>>> from jumpssh import SSHSession
>>> ssh_session = SSHSession('gateway.example.com', 'my_user', password='my_password').open()

get remote session using same user than current session and same authentication method
>>> remote_session = ssh_session.get_remote_session('remote.example.com')

get remote session with specific user and password
>>> remote_session = ssh_session.get_remote_session('remote.example.com',
... username='other_user',
... password='other_user_password')

retry indefinitely to connect to remote host until success
>>> remote_session = ssh_session.get_remote_session('remote.example.com', retry=-1)

	
get_sftp_client()

	
	See documentation for available methods on paramiko.sftp_client at :
	http://docs.paramiko.org/en/latest/api/sftp.html

	Returns

	paramiko SFTP client object.

	Return type

	paramiko.sftp_client.SFTPClient [http://docs.paramiko.org/en/stable/api/sftp.html#paramiko.sftp_client.SFTPClient]

	Usage::
	# open session with remote host
>>> from jumpssh import SSHSession
>>> ssh_session = SSHSession(‘gateway.example.com’, ‘my_user’, password=’my_password’).open()

get sftp client
>>> sftp_client = ssh_session.get_sftp_client()

	
is_active()

	Check if connection with remote host is still active

An inactive SSHSession cannot run command on remote host

	Returns

	True if current session is still active, else False

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Usage::
	>>> from jumpssh import SSHSession
>>> with SSHSession('gateway.example.com', 'my_user', password='my_password') as ssh_session:
>>> ... ssh_session.is_active()
True
>>> ssh_session.is_active()
False

	
open(retry=0, retry_interval=10)

	Open session with the remote host

	Parameters

	
	retry – number of retry to establish connection with remote host (-1 for infinite retry)

	retry_interval – number of seconds between each retry

	Returns

	same SSHSession opened

	Usage::
	>>> from jumpssh import SSHSession
>>> ssh_session = SSHSession('gateway.example.com', 'my_user', password='my_password').open()
>>> ssh_session.is_active()
True

	
put(local_path, remote_path, use_sudo=False, owner=None, permissions=None, username=None)

	Upload a file to the remote host

	Parameters

	
	local_path – path of the local file to upload

	remote_path – destination folder in which to upload the local file

	use_sudo – allow to upload a file in location with restricted permissions

	owner – user that will own the copied file on the remote host
syntax : user:group or simply user if same than group

	permissions – permissions to apply on the remote file (chmod format)

	username – sudo user

	Raises

	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – if local file local_path does not exist

Usage:

copy local file on remote host
>>> ssh_session.put(local_path='/path/to/local/file', remote_path='/path/to/remote/file')

copy local file on remote host in a remote path needing sudo permission
>>> ssh_session.put(local_path='/path/to/local/file', remote_path='/path/to/remote/file', use_sudo=True)

copy local file on remote host with specific owner and permissions
>>> ssh_session.put(local_path='/path/to/local/file', remote_path='/path/to/remote/file',
... owner='root', permissions='600')

	
run_cmd(cmd, username=None, raise_if_error=True, continuous_output=False, silent=False, timeout=None, input_data=None, success_exit_code=0, retry=0, retry_interval=5, keep_retry_history=False)

	Run command on the remote host and return result locally

	Parameters

	
	cmd – command to execute on remote host
cmd can be a str or a list of str

	username – user used to execute the command (sudo privilege needed)

	raise_if_error – if True, raise SSHException when exit code of the command is different from 0
else just return exit code and command output

	continuous_output – if True, print output all along the command is running

	silent – if True, does not log the command run (useful if sensitive information are used in command)
if parameter is a list, all strings of the command matching an item of the list will be concealed
in logs (regexp supported)

	timeout – length in seconds after what a TimeoutError exception is raised

	input_data – key/value dictionary used when remote command expects input from user
when key is matching command output, value is sent

	success_exit_code – integer or list of integer considered as a success exit code for command run

	retry – number of retry until exit code is part of successful exit code list (-1 for infinite retry) or
RunCmdError exception is raised

	retry_interval – number of seconds between each retry

	keep_retry_history – if True, all retries results are kept and accessible in return result
default is False as we don’t want to save by default all output for all retries especially for big output

	Raises

	
	TimeoutError – if command run longer than the specified timeout

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if cmd parameter is neither a string neither a list of string

	SSHException – if current SSHSession is already closed

	RunCmdError – if exit code of the command is different from 0 and raise_if_error is True

	Returns

	a class inheriting from collections.namedtuple containing mainly exit_code and output
of the remotely executed command

	Return type

	RunCmdResult

	Usage::
	>>> from jumpssh import SSHSession
>>> with SSHSession('gateway.example.com', 'my_user', password='my_password') as ssh_session:
>>> ... ssh_session.run_cmd('hostname')
RunSSHCmdResult(exit_code=0, output=u'gateway.example.com')

jumpssh.util

Useful functions used by the rest of jumpssh.

	
jumpssh.util.id_generator(size=6, chars='abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789')

	Generate random string with specified size and set of characters

	Parameters

	
	size – length of the expected string

	chars – expected characters in the string

	Returns

	random string

	
jumpssh.util.yes_no_query(question, default=None, interrupt=None)

	Ask a yes/no question via standard input and return a boolean answer.

If default is given, it is used if the user input is empty.
If interrupt is given, it is used if the user presses Ctrl-C.
An EOF is treated as the default answer. If there is no default, an exception is raised to prevent infinite loops.
Valid answers are: y/yes/n/no (match is not case sensitive).
If invalid input is given, the user will be asked until they actually give valid input.

	Parameters

	
	question – A question that is presented to the user.

	default – The default value when enter is pressed with no value.
When None, there is no default value and the query will loop.

	interrupt – The default value when the user presses Ctrl-C

	Returns

	A bool indicating whether user has entered yes or no.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

Changes

1.6.5 (11/03/2020)

	[Bug] #152 [https://github.com/AmadeusITGroup/JumpSSH/issues/152]: Remove pkg_info.json file and replace it with python file to avoid access issue at runtime

	[Improvement] add python 3.9 validation

1.6.4 (08/24/2020)

	[Bug] #109 [https://github.com/AmadeusITGroup/JumpSSH/issues/109]: Fix automated session closure handled by python garbage collection

	[Bug] #120 [https://github.com/AmadeusITGroup/JumpSSH/issues/120]: Fix get_remote_session not respecting ‘timeout’ parameter

	[Bug] #139 [https://github.com/AmadeusITGroup/JumpSSH/issues/139]: Fix run_cmd raising AuthenticationException if no agent is running

	[Improvement][Tests]: use flaky package to automatically rerun flaky tests

1.6.3 (03/12/2020)

	[Improvement]: remove pytest-runner from setup_requires as this is deprecated for security reasons, see https://github.com/pytest-dev/pytest-runner

	[Improvement]: use only fixed test dependencies in requirements_dev.txt

1.6.1 (04/08/2019)

	[Bug] #51 [https://github.com/AmadeusITGroup/JumpSSH/issues/51]: ‘get’ file was failing if the remote file is binary. Thanks to @pshaobow [https://github.com/pshaobow] for the report.

	[Feature]: Ability to use any parameter of paramiko.client.SSHClient.connect in get_remote_session, was forgotten during implementation of #43 [https://github.com/AmadeusITGroup/JumpSSH/issues/43].

	[Improvement]: tests migrated to docker-compose to setup docker environment

1.5.1 (01/14/2019)

	[Feature] #43 [https://github.com/AmadeusITGroup/JumpSSH/issues/43]: Ability to use any parameter of paramiko.client.SSHClient.connect in SSHSession.

1.4.1 (03/31/2018)

	[Bug] #33 [https://github.com/AmadeusITGroup/JumpSSH/issues/33]: Fix download of file owned by root with SSHSession.get

	[Bug] : Automatically open closed session when calling SSHSession.put. Thanks to @fmaupas [https://github.com/fmaupas] for the fix.

1.4.0 (01/29/2018)

	[Feature] #29 [https://github.com/AmadeusITGroup/JumpSSH/issues/29]: Expose compression support from Paramiko (inherited from SSH).
Thanks to @fmaupas [https://github.com/fmaupas] for the contribution.

1.3.2 (12/17/2017)

	[Bug] #23 [https://github.com/AmadeusITGroup/JumpSSH/issues/23]: do not print byte but str in continuous output when running command with python3.
Thanks to @nicholasbishop [https://github.com/nicholasbishop] for the report.

1.3.1 (09/15/2017)

	fix interruption of remote command when transport channel is already closed

1.3.0 (09/14/2017)

	allow to conceal part of the command run in logs specifying list of pattern in silent parameter (regexp format)
For example, if a password is specified in command you may want to conceal it in logs but still want to log the
rest of the command run

	ability to customize success exit code when calling run_cmd so that an exit code different from 0 do not raise
any exception. Success exit code can be an int or even a list of int if several exit codes are considered a success.

	ability to retry remote command until success or max retry is reached

	ability to forward Ctrl-C to remote host in order to interrupt remote command before stopping local script

1.2.1 (07/27/2017)

	reduce logging level of some logs

	propagate missing ‘silent’ parameter in restclient module to run_cmd to control logging

1.2.0 (07/24/2017)

	automatically open inactive session when running command on it

	automatically open inactive jump session when requesting remote session

1.1.0 (07/20/2017)

	Each ssh session can be used as a jump server to access multiple remote sessions in parallel. Only 1 remote
session per jump server was allowed before.

	ability to customize retry interval when opening a ssh session

1.0.2 (07/14/2017)

	Fix run of shell builtins commands (source, …) when impersonating another user as they cannot be executed
without the shell and by default, sudo do not run shell

1.0.1 (06/11/2017)

	Fix BadHostKeyException raised by paramiko when reusing same ssh session object to connect to a different
remote host having same IP than previous host (just TCP port is different)

1.0.0 (05/24/2017)

	First release

 Here are the licenses applicable to the use of the jumpssh library.

License

COPYRIGHT AND LICENSE

The MIT License (MIT)
Copyright (c) 2017 Amadeus sas.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Python Module Index

 j

 		 	

 		
 j	

 	[image: -]
 	
 jumpssh	

 	
 	
 jumpssh.exception	

 	
 	
 jumpssh.restclient	

 	
 	
 jumpssh.session	

 	
 	
 jumpssh.util	

Index

 C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | M
 | O
 | P
 | R
 | S
 | T
 | Y

C

 	
 	check_for_success() (jumpssh.restclient.HTTPResponse method)

 	
 	close() (jumpssh.session.SSHSession method)

 	ConnectionError

D

 	
 	delete() (jumpssh.restclient.RestSshClient method)

E

 	
 	exists() (jumpssh.session.SSHSession method)

 	
 	exit_code() (jumpssh.session.RunSSHCmdResult property)

F

 	
 	file() (jumpssh.session.SSHSession method)

G

 	
 	get() (jumpssh.restclient.RestSshClient method)

 	(jumpssh.session.SSHSession method)

 	get_cmd_output() (jumpssh.session.SSHSession method)

 	
 	get_exit_code() (jumpssh.session.SSHSession method)

 	get_remote_session() (jumpssh.session.SSHSession method)

 	get_sftp_client() (jumpssh.session.SSHSession method)

H

 	
 	head() (jumpssh.restclient.RestSshClient method)

 	
 	HTTPResponse (class in jumpssh.restclient)

I

 	
 	id_generator() (in module jumpssh.util)

 	
 	is_active() (jumpssh.session.SSHSession method)

 	is_valid_json_body() (jumpssh.restclient.HTTPResponse method)

J

 	
 	json() (jumpssh.restclient.HTTPResponse method)

 	
 jumpssh.exception

 	module

 	
 jumpssh.restclient

 	module

 	
 	
 jumpssh.session

 	module

 	
 jumpssh.util

 	module

M

 	
 	
 module

 	jumpssh.exception

 	jumpssh.restclient

 	jumpssh.session

 	jumpssh.util

O

 	
 	open() (jumpssh.session.SSHSession method)

 	
 	options() (jumpssh.restclient.RestSshClient method)

 	output() (jumpssh.session.RunSSHCmdResult property)

P

 	
 	patch() (jumpssh.restclient.RestSshClient method)

 	post() (jumpssh.restclient.RestSshClient method)

 	
 	put() (jumpssh.restclient.RestSshClient method)

 	(jumpssh.session.SSHSession method)

R

 	
 	request() (jumpssh.restclient.RestSshClient method)

 	RestClientError

 	RestSshClient (class in jumpssh.restclient)

 	
 	run_cmd() (jumpssh.session.SSHSession method)

 	RunCmdError

 	RunCmdResult (class in jumpssh.session)

 	RunSSHCmdResult (class in jumpssh.session)

S

 	
 	SSHException

 	
 	SSHSession (class in jumpssh.session)

T

 	
 	TimeoutError

Y

 	
 	yes_no_query() (in module jumpssh.util)

 nav.xhtml

 Table of Contents

 		
 Welcome to jumpssh’s documentation!

 		
 Introduction

 		
 JumpSSH

 		
 What

 		
 Installation

 		
 Examples

 		
 Tests

 		
 Contributing

 		
 Api reference

 		
 jumpssh.exception

 		
 jumpssh.restclient

 		
 jumpssh.session

 		
 jumpssh.util

 		
 Changes

 		
 1.6.5 (11/03/2020)

 		
 1.6.4 (08/24/2020)

 		
 1.6.3 (03/12/2020)

 		
 1.6.1 (04/08/2019)

 		
 1.5.1 (01/14/2019)

 		
 1.4.1 (03/31/2018)

 		
 1.4.0 (01/29/2018)

 		
 1.3.2 (12/17/2017)

 		
 1.3.1 (09/15/2017)

 		
 1.3.0 (09/14/2017)

 		
 1.2.1 (07/27/2017)

 		
 1.2.0 (07/24/2017)

 		
 1.1.0 (07/20/2017)

 		
 1.0.2 (07/14/2017)

 		
 1.0.1 (06/11/2017)

 		
 1.0.0 (05/24/2017)

 		
 License

_static/minus.png

_static/plus.png

_static/file.png

